Abstract

Spintronics devices and in particular thermally assisted magnetic random access memories require a wide range of ferromagnetic/antiferromagnetic (F/AF) exchange bias (EB) properties and subsequently of AF materials to fulfil diverse functionality requirements for the reference and storage. For the reference layer, large EB energies and high blocking temperature (TB) are required. In contrast, for the storage layer, mostly moderate TB are needed. One of the present issues is to find a storage layer with properties intermediate between those of IrMn and FeMn and in particular: (i) with a TB larger than FeMn for better stability at rest-T but lower than IrMn to reduce power consumption at write-T and (ii) with improved magnetic interfacial quality, i.e., with reduced interfacial glassy character for lower properties dispersions. To address this issue, the EB properties of F/AF based stacks were studied for various mixed [IrMn/FeMn] AFs. In addition to EB loop shifts, the F/AF magnetic interfacial qualities and the AF grains thermal stability are probed via measurements of the low- and high-temperature contributions to the TB distributions, respectively. A tuning of the above three parameters is observed when evolving from IrMn to FeMn via [IrMn/FeMn] repetitions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call