Abstract

We have developed a thermodynamically consistent and tuning-parameter-free two-phase model for Eulerian large-eddy simulations (LES) of liquid-fuel injection and mixing at high pressure. The model is based on cubic equations of state and vaporliquid equilibrium calculations. It can represent the coexistence of supercritical states and multi-component subcritical two-phase states via a homogeneous mixture approach without any semiempirical break-up and evaporation models. Computational results for liquid-fuel injection at transcritical operating conditions are found to agree very well with available experimental data for the ECN Spray A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call