Abstract

This paper first provides some useful results on a generalized random coefficient autoregressive model and a generalized hidden Markov model. These results simultaneously imply strict stationarity, existence of higher order moments, geometric ergodicity, and β-mixing with exponential decay rates, which are important properties for statistical inference. As applications, we then provide easy-to-verify sufficient conditions to ensure β-mixing and finite higher order moments for various linear and nonlinear GARCH(1,1), linear and power GARCH(p,q), stochastic volatility, and autoregressive conditional duration models. For many of these models, our sufficient conditions for existence of second moments and exponential β-mixing are also necessary. For several GARCH(1,1) models, our sufficient conditions for existence of higher order moments again coincide with the necessary ones in He and Terasvirta (1999, Journal of Econometrics 92, 173–192).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.