Abstract

The hitting and mixing times are two often-studied quantities associated with Markov chains. Yuval Peres, Perla Sousi and Roberto Oliveira showed that the mixing times and “worst-case” hitting times of reversible Markov chains on finite state spaces are “equivalent”—that is, equal up to some universal multiplicative constant. We have extended this strong connection between mixing and hitting times to Markov chains satisfying the strong Feller property in an earlier work. In the present paper, we further extend the results to include Metropolis–Hastings chains, the popular Gibbs sampler (from statistics), and Glauber dynamics (from statistical physics), which make “one-dimensional” updates and thus do not satisfy the strong Feller property. We also apply this result to obtain decomposition bounds for such Markov chains. Our main tools come from nonstandard analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.