Abstract

An experimental investigation of the mixing and combustion processes that occur in and around a cavity-based flameholder in a supersonic flow is reported. Cavity-based flameholders are commonly found in hydrocarbon-fueledscramjet combustors; however, detailed information concerning the behavior of these devices, their optimal shape and fueling strategies, combustion stability, and interactions with disturbances in the main airflow (i.e., shock trains or shock-boundary layer interactions) is largely unavailable in the existing literature. This work is part of an ongoing research program aimed at providing information to help fill these voids and improve the overall understanding of cavities for use as scramjet flameholders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.