Abstract
In this paper, we propose a method to dynamically modulate the input state of recurrent neural networks (RNNs) so as to realize flexible and robust robot behavior. We employ the so-called stochastic continuous-time RNN (S-CTRNN), which can learn to predict the mean and variance (or uncertainty) of subsequent sensorimotor information. Our proposed method uses this estimated uncertainty to determine a mixture ratio for combining actual and predicted sensory states of network input. The method is evaluated by conducting a robot learning experiment in which a robot is required to perform a sensory-dependent task and a sensory-independent task. The sensory-dependent task requires the robot to incorporate meaningful sensory information, and the sensory-independent task requires the robot to ignore irrelevant sensory information. Experimental results demonstrate that a robot controlled by our proposed method exhibits flexible and robust behavior, which results from dynamic modulation of the network input on the basis of the estimated uncertainty of actual sensory states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.