Abstract
High-throughput genomic technologies have proved to be useful in the search for both genetic disease markers and more complex predictive and descriptive models. By the same token, it became obvious that accurate and interpretable models need to concern more than raw measurements taken at a single phase of gene expression. In order to reach a deeper understanding of the molecular nature of complexly orchestrated biological processes, all the available measurements and existing genomic knowledge need to be fused. In this paper, we introduce a tool for machine learning from heterogeneous gene expression data using prior knowledge. The tool is called miXGENE, it is elaborated upon in close connection with the biological departments that dispose of the above-mentioned data and have a strong interest in their integration within particular problem-oriented projects. The main idea is not merely to capture the transcriptional phase of gene expression quantified by the amount of messenger RNA (mRNA). The increasing availability of microRNA (miRNA) data asks for its concurrent analysis with the transcriptional data. Moreover, epigenetic data such as methylation measurements can help to explain unexpected transcriptional irregularities. miXGENE is an environment for building workflows that enable rapid prototyping of integrative molecular models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.