Abstract

<p>Rapid dip-slip (11.7±3.5 mm/yr) on the active Mai'iu low-angle normal fault in SE Papua New Guinea enabled the preservation of early formed microstructures in mid to shallow crustal rocks. The corrugated, convex-upward shaped fault scarp dips as low as 16°–20° near its trace close to sea level and forms a continuous landscape surface traceable for at least 28 km in the NNE slip-direction. Structurally, offset on the Mai'iu fault has formed a metamorphic core complex and has exhumed a metabasaltic footwall during 30–45 km of dip slip on a rolling-hinge style detachment fault. The exhumed crustal section records the spatiotemporal evolution of fault rock deformation mechanisms and the differential stresses that drive slip on this active low-angle normal fault.</p><p>The Mai'iu fault exposes a <3 m-thick fault core consisting of gouges and cataclasites. These deformed units overprint a structurally underlying carapace of metabasaltic mylonites that are locally >60 m-thick. Detailed microstructural, textural and geochemical data combined with chlorite-based geothermometry of these fault rocks reveal a variety of deformation processes operating within the Mai'iu fault zone. A strong crystallographic preferred orientation of non-plastically deformed actinolite in a pre-existing, fine-grained (6–33 µm) mafic assemblage indicates that mylonitic deformation was controlled by diffusion-accommodated grain-boundary sliding together with syn-tectonic chlorite precipitation at >270–370°C. At shallower crustal levels on the fault (T≈150–270°C), fluid-assisted mass transfer and metasomatic reactions created a foliated cataclasite fabric during inferred periods of aseismic creep. Pseudotachylites and ultracataclasites mutually cross-cut both the foliations and one another, recording repeated episodes of seismic slip. In these fault rocks, paleopiezometry based on calcite twinning yields peak differential stresses of ~140–185 MPa at inferred depths of 8–12 km. These differential stresses were high enough to drive continued slip on a ~35° dipping segment of the Mai'iu fault, and to cause new brittle yielding of strong mafic rocks in the exhuming footwall of that fault. In the uppermost crust (<8 km; T<150°C), where the Mai'iu fault dips shallowly and is most severely misoriented for slip, actively deforming fault rocks are clay-rich gouges containing abundant saponite, a frictionally weak mineral (µ<0.28).</p><p>In summary, these results combined with fault dislocation models of GPS velocities from campaign stations in this region suggest a combination of brittle frictional and viscous flow processes within the Mai'iu fault zone. Gouges of the Mai'iu fault have been strongly altered by fluids and are frictionally weak near the surface, where the fault is most strongly misoriented. At greater depths (8–12 km) the fault is stronger and slips both by aseismic creep and episodic earthquakes (a mixture of fast and slow slip) in response to locally high differential stresses.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call