Abstract

We examine experimentally a chemical system in a flow-through stirred reactor, which is known to provide large-amplitude oscillations of the pH value. By systematic variation of the flow rate, we find that the system displays hysteresis between a steady state and oscillations, and more interestingly, a transition to chaos involving mixed-mode oscillations. The basic pattern of the measured pH in the mixed-mode regime includes a large-scale peak followed by a series of oscillations on a much smaller scale, which are usually highly irregular and of variable duration. The bifurcation diagram shows that chaos sets in via a period-doubling route observed on the large-amplitude scale, but simultaneously small-amplitude oscillations are involved. Beyond the apparent accumulation of period doubling bifurcations, a mixed-mode regime with irregular oscillations on both scales is observed, occasionally interrupted by windows of periodicity. As the flow rate is further increased, chaos turns into quasiperiodicity and later to a simple small-amplitude periodic regime. Dynamics of selected typical regimes were examined with the tools of nonlinear time-series analysis, which include phase space reconstruction of an attractor and calculation of the maximal Lyapunov exponent. The analysis points to deterministic chaos, which appears via a period doubling route from below and via a route involving quasiperiodicity from above, when the flow rate is varied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.