Abstract

This paper explores how to implement an iteratively staged domain-specific language (DSL) by embedding into a functional language. The domain is modelling and simulation of physical systems where models are expressed in terms of non-causal differential-algebraic equations; i.e., sets of constraints solved through numerical simulation. What distinguishes our language is that the equational constraints are first class entities allowing for an evolving model structure characterised by repeated generation of updated constraints. Hence iteratively staged. Our DSL can thus be seen as a combined functional and constraint programming language, albeit a two-level one, with the functional language chiefly serving as a meta language. However, the two levels do interact throughout the simulation. The embedding strategy we pursue is a mixture of deep and shallow, with the deep embedding enabling justin-time (JIT) compilation of the constraints as they are generated for efficiency, while the shallow embedding is used for the remainder for maximum leverage of the host language. The paper is organised around a specific DSL, but our implementation strategy should be applicable for iteratively staged languages in general. Our DSL itself is further a novel variation of a declarative constraint programming language.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.