Abstract

Abstract Workpiece deformation during machining is a significant source of machined feature geometric error. This paper presents a linear, mixed integer programming model for determining the optimal locations of locator buttons, supports, and their opposing clamps for minimizing the affect of static workpiece deformation on machined feature geometric error. This model operates on discretized candidate regions as opposed to continuous candidate regions. In addition it utilizes a condensed FEA model of the workpiece in order to minimize model size and computation expense. This model has two advantages over existing nonlinear programming (NLP) formulations. The first is its ability to solve problems in which fixture elements can be placed over multiple regions. The second is that a global optimal solution to this model can be obtained using commercially available software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.