Abstract

BackgroundInsecticide resistance monitoring is essential to help national programmers to implement more effective and sustainable malaria control strategies in endemic countries. The current study aimed at an exploring the involvement of detoxifying enzymes in the insecticide phenotype resistance in Anopheles gambiae s.l.from Benin, in order to guide future malaria vector control interventions.MethodsLarvae and pupae of Anopheles gambiae s.l. mosquitoes were collected from the breeding sites in Oueme, Atacora and Alibori provinces. CDC susceptibility tests were conducted on unfed female mosquitoes aged 2–5 days old. CDC bioassays were performed with stock solutions of permethrin (21.5 μg per bottle), deltamethrin (12.5 μg per bottle) and bendiocarb (12.5 μg per bottle). CDC biochemical assays using synergists were also conducted to assess the metabolic resistance.ResultsThe susceptibility of Anopheles gambiae Agbalilame and Kandi populations to permethrin and deltamethrin respectively, increased significantly when synergized by PBO, suggesting an implication of mono-oxygenases in resistance of Anopheles gambiae s.l. to pyrethroid. Esterases may play a role in bendiocarb resistance in Anopheles gambiae Tanguieta.ConclusionSynergists partially restored susceptibility to pyrethroid and carbamate insecticides and might help mitigate the impact of vector resistance in Anopheles gambiae Agbalilame, Kandi and Tanguieta populations. However, additional vector control tools are needed to further impact on malaria transmission in such settings.This will improve the implementation and management of future control programs against this important malaria vector in Benin and in Africa in general.

Highlights

  • Insecticide resistance monitoring is essential to help national programmers to implement more effective and sustainable malaria control strategies in endemic countries

  • Susceptibility of Anopheles gambiae s.l. populations to pyrethroids and to carbamates The Kisumu strain confirmed its susceptibility status as a reference strain.All female mosquitoes of Anopheles gambiae Kisumu that were exposed to CDC bottles treated with permethrin 21.5 μg/bottle, deltamethrin 12.5 μg/bottle and bendiocarb 12.5 μg/bottle were dead and none of them could fly after 30 minutes, which represents the susceptibility threshold time or diagnostic time clearly defined by the CDC protocol

  • A large proportion of the Anopheles gambiae Agbalilame population (76%) continued to fly again in the bottles following 30 minutes exposure to CDC bottles treated with permethrin

Read more

Summary

Introduction

Insecticide resistance monitoring is essential to help national programmers to implement more effective and sustainable malaria control strategies in endemic countries. The current study aimed at an exploring the involvement of detoxifying enzymes in the insecticide phenotype resistance in Anopheles gambiae s.l.from Benin, in order to guide future malaria vector control interventions. Malaria is transmitted by Anopheles mosquitoes, and because there is currently no vaccine available, vector control is one of the gambiae s.l from Benin [6]. There are no short term solutions to vector resistance problems, it is important for programme managers to better understand resistance issues and to promote good practices in insecticide based vector control. It is essential to use public health insecticides in such a way that they are safe, effective, and affordable, while taking into account resistance management issues. Vector control programmes need to meet this condition in order to be effective and sustainable

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call