Abstract

MEMS technology (MicroElectroMechanical-System) has been successfully employed since a few decades in the sensors/actuators field. Several products available on the market nowadays include MEMS-based accelerometers and gyroscopes, pressure sensors and micro-mirrors matrices. Beside such well-established exploitation of MEMS technology, its use within RF (Radio Frequency) blocks and systems/sub-systems has been attracting, in recent years, the interest of the Scientific Community for the significant RF performances boosting that MEMS devices can enable. Several significant demonstrators of entirely MEMS-based lumped components, like variable capacitors (Hyung et al., 2008), inductors (Zine-El-Abidine et al., 2003) and micro-switches (Goldsmith et al., 1998), are reported in literature, exhibiting remarkable performance in terms of large tuning-range, very high Q-Factor and low-loss, if compared with the currently used components implemented in standard semiconductor technology (Etxeberria & Gracia, 2007, Rebeiz & Muldavin, 1999). Starting from the just mentioned basic lumped components, it is possible to synthesize entire functional sub-blocks for RF applications in MEMS technology. Also in this case, highly significant demonstrators are reported and discussed in literature concerning, for example, tuneable phase shifters (Topalli et al., 2008), switching matrices (Daneshmand & Mansour, 2007), reconfigurable impedance matching networks (Larcher et al., 2009) and power attenuators (Iannacci et al., 2009, a). In all the just listed cases, the good characteristics of RF-MEMS devices lead, on one side, to very highperformance networks and, on the other hand, to enabling a large reconfigurability of the entire RF/Microwave systems employing MEMS sub-blocks. In particular, the latter feature addresses two important points, namely, the reduction of hardware redundancy, being for instance the same Power Amplifier within a mobile phone suitable both in transmission (Tx) and reception (Rx) (De Los Santos, 2002), and the usability of the same RF apparatus in compliance with different communication standards (like GSM, UMTS, WLAN and so on) (Varadan, 2003). Beside the exploitation of MEMS technology within RF transceivers, other potentially successful uses of Microsystems are in the Microwave field, concerning, e.g., very compact switching units, especially appealing to satellite applications for the very reduced weight (Chung et al., 2007), and phase shifters in order to electronically steer short 15

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call