Abstract
A mixed quantum mechanical and Monte Carlo method for calculating Auger spectra from nanoclusters is presented. The approach, based on a cluster method, consists of two steps. Ab initio quantum mechanical calculations are first performed to obtain accurate energy and probability distributions of the generated Auger electrons. In a second step, using the calculated line shape as electron source, the Monte Carlo method is used to simulate the effect of inelastic losses on the original Auger line shape. The resulting spectrum can be directly compared to ``as-acquired'' experimental spectra, thus avoiding background subtraction or deconvolution procedures. As a case study, the $\text{O}\text{ }K\text{\ensuremath{-}}LL$ spectrum from solid ${\text{SiO}}_{2}$ is considered. Spectra computed before or after the electron has traveled through the solid, i.e., unaffected or affected by extrinsic energy losses, are compared to the pertinent experimental spectra measured within our group. Both transition energies and relative intensities are well reproduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.