Abstract

This work shows that the Cahn-Hilliard theory of diffusive phase separation is related to an intrinsic mixed variational principle that determines the rate of concentration and the chemical potential. The principle characterizes a canonically compact model structure, where the two balances involved for the species content and microforce appear as the Euler equations of a variational statement. The existence of the variational principle underlines an inherent symmetry in the two-field representation of the Cahn-Hilliard theory. This can be exploited in the numerical implementation by the construction of time- and space-discrete incremental potentials, which fully determine the update problems of typical time-stepping procedures. The mixed variational principles provide the most fundamental approach to the finite-element solution of the Cahn-Hilliard equation based on low-order basis functions, leading to monolithic symmetric algebraic systems of iterative update procedures based on a linearization of the nonlinear problem. They induce in a natural format the choice of symmetric solvers for Newton-type iterative updates, providing a speed-up and reduction of data storage when compared with non-symmetric implementations. In this sense, the potentials developed are believed to be fundamental ingredients to a deeper understanding of the Cahn-Hilliard theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.