Abstract
We study the questions of one-valued solvability of mixed value problem for nonlinear integro-differential equation, consisting a parabolic operator of higher power. By the aid of Fourier series of separation variables the considering problem we can reduce to study the countable system of nonlinear integral equations, one-valued solvability of which will be proved by the method of successive approximations. The convergence of Fourier series will be studied by means of integral identity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational Mathematics and Mathematical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.