Abstract

Mixed-valence phenomena associated with the highly correlated narrow-band behaviour of the 4f electrons in rare earths are well documented for a variety of rare-earth chalcogenides, borides and intermetallics (Kondo insulators and heavy fermions). The family of rare-earth fullerides with stoichiometry RE2.75C60 (RE=Sm, Yb, Eu) also displays an analogous phenomenology and a remarkable sensitivity of the rare-earth valency to external stimuli (temperature and pressure) making them the first known molecular-based members of this fascinating class of materials. Using powerful crystallographic and spectroscopic techniques which provide direct indications of what is happening in these materials at the microscopic level, we find a rich variety of temperature- and pressure-driven abrupt or continuous valence transitions-the electronically active fulleride sublattice acts as an electron reservoir that can accept electrons from or donate electrons to the rare-earth 4f/5d bands, thereby sensitively modulating the valence of the rare-earth sublattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.