Abstract

This paper describes the design of attitude-hold controllers and their subsequent stability and performance analysis for directional drilling tools as typically used in the oil industry. Based on an input transformation developed in earlier work that partially linearizes and decouples the plant dynamics of the drilling tool, the resulting plant model is used as the basis for both pole placement and optimal H∞ controller designs. A mixed uncertainty stability and performance analysis is then performed on each of the controller designs. Results for a transient simulation of the proposed controller are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.