Abstract

Deep learning has made significant advancements in speech enhancement, which plays a crucial role in improving the quality of speech signals in noisy conditions. In this paper, we propose a new approach called M-DGAN, which introduces a time (T)-domain encoder-decoder structure with rich channel representations into the time-frequency (TF)-domain generator framework, resulting in a new generator structure with mixed magnitude and phase representations in the T and TF-domains. The proposed mixed T-domain and TF-domain generator, incorporating the cascaded reworked conformer (CRC) structure, exhibits improved modeling capability and adaptability. Test results on the Voice Bank + DEMAND public dataset show that our method achieves the highest score with PSEQ=3.52\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$PSEQ=3.52$$\\end{document} and performs well on all the remaining metrics when compared to the current state-of-the-art methods. In addition, tests on the NISQA_TEST_LIVETALK real dataset of the NISQA Corpus show the breadth and robustness of our model on speech enhancement tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.