Abstract

We consider the mixed systems composed of a fixed number of components whose lifetimes are i.i.d. with a known distribution which has a positive and finite variance. We show that a certain of the k-out-of-n systems has the minimal lifetime variance, and the maximal one is attained by a mixture of series and parallel systems. The number of the k-out-of-n system, and the probability weights of the mixture depend on the first two moments of order statistics of the parent distribution of the component lifetimes. We also show methods of calculating extreme system lifetime variances under various restrictions on the system lifetime expectations, and vice versa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.