Abstract
The use of mixed-state ionic beams in collision dynamics investigations is examined. Using high resolution Auger projectile spectroscopy involving He-like ( 1 s 2 1 S , 1 s 2 s 3 , 1 S ) mixed-state beams, the spectrum contributions of the 1 s 2 s 3 S metastable beam component is effectively separated and clearly identified. This is performed with a technique that exploits two independent spectrum measurements under the same collision conditions, but with ions having quite different metastable fractions, judiciously selected by varying the ion beam charge-stripping conditions. Details of the technique are presented together with characteristic examples. In collisions of 4 MeV B 3 + with H 2 targets, the Auger electron spectrum of the separated 1 s 2 s 3 S boron beam component allows for a detailed analysis of the formation of the 1 s 2 s ( 3 S ) n l 2 L states by direct n l transfer. In addition, the production of hollow 2 s 2 p 1 , 3 P doubly- and 2 s 2 p 2 2 D triply-excited states, by direct excitation and transfer-excitation processes, respectively, can also be independently studied. In similar mixed-state beam collisions of 15 MeV C 4 + with H 2 , He, Ne and Ar targets, the contributions of the 1 s 2 , 1 s 2 s 3 , 1 S beam components to the formation of the 2 s 2 p 3 , 1 P states by double-excitation, 1 s → 2 p excitation and transfer-loss processes can be clearly identified, facilitating comparisons with theoretical calculations.
Highlights
Over the past four decades considerable attention has been paid to the study of ion-atom collisions using highly charged ion projectiles at various accelerator facilities [1,2]
And Triply Excited Li-Like States In Figure 3, we present measurements of the complete Li-like Auger spectrum obtained in collisions of 4 MeV B3+ with H2 targets
The same electron spectrum was obtained in two independent measurements at the same collision energy, but using mixed-state beams having quite different 1s2s 3S metastable fractions
Summary
Over the past four decades considerable attention has been paid to the study of ion-atom collisions using highly charged ion projectiles at various accelerator facilities [1,2]. This interest has been driven primarily by the need for a basic understanding of atomic collisions processes such as electron transfer, excitation and ionization and their combinations which lead to the production of excited states of matter [3,4,5,6,7]. The study of these fundamental atomic collision processes, becomes considerably more trackable from both the experimental and the theoretical point of view
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.