Abstract

Convolutional Neural Networks (CNNs) play a vital role in machine learning. CNNs are typically both computing and memory intensive. Emerging resistive random-access memories (RRAMs) and RRAM crossbars have demonstrated great potentials in boosting the performance and energy efficiency of CNNs. Compared with small crossbars, large crossbars show better energy efficiency with less interface overhead. However, conventional workload mapping methods for small crossbars cannot make full use of the computation ability of large crossbars. In this paper, we propose an Overlapped Mapping Method (OMM) and MIxed Size Crossbar based RRAM CNN Accelerator (MISCA) to solve this problem. MISCA with OMM can reduce the energy consumption caused by the interface circuits, and improve the parallelism of computation by leveraging the idle RRAM cells in crossbars. The simulation results show that MISCA with OMM can achieve 2.7× speedup, 30% utilization rate improvement, and 1.2× energy efficiency improvement on average compared with fixed size crossbars based accelerator using the conventional mapping method. In comparison with GPU platform, MISCA with OMM can perform 490.4× higher on average in energy efficiency and 20× higher on average in speedup. Compared with PRIME, an existing RRAM based accelerator, MISCA has 26.4× speedup and 1.65× energy efficiency improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.