Abstract
Chagas disease (American trypanosomiasis) is a 'neglected' pathology that affects millions of people worldwide, mainly in Latin America. Trypanosoma cruzi, the causative agent, is an obligate intracellular parasite with a complex and diverse biology that infects several mammalian species, including humans. Because of genetic variability among strains and the presence of four biochemically and morphologically distinct parasite forms, the outcome of T. cruzi infection varies considerably depending on host cell type and parasite strain. During the initial contact, cellular communication is established by host-recognition-mediated responses, followed by parasite adherence and penetration. For this purpose, T. cruzi expresses a variety of proteins that modify the host cell, enabling it to safely reach the cytoplasm. After entry into the host cell, T. cruzi forms a transitory structure termed 'parasitophorous vacuole' (PV), followed by its cytoplasmic replication and differentiation after PV rupture, and subsequent invasion of other cells. The success of infection, maintenance and survival inside host cells is facilitated by the ability of T. cruzi to subvert various host signaling mechanisms. We focus in this Review on the various mechanisms that induce host cytoskeletal rearrangements, activation of autophagy-related proteins and crosstalk among major immune response regulators, as well as recent studies on the JAK-STAT pathway.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.