Abstract

In organic optoelectronics, order of conjugated molecules is required for good charge transport, but strong aggregation behavior may generate grain boundaries and trapping, opposing those benefits. Side chains on a polymer’s backbone are major reason for and also tool to modify its morphological characteristics. In this report, we show on the example poly(9,9-dioctylfluorenyl-co-bithiophene) (F8T2) that by a combination of two types of side-chains on the backbone of equal number of carbons, one promoting crystallization, another hindering it, organization of the main chains can be controlled, without changing its major properties. We compare the traditional F8T2 derivative with octyl substituent with two modified species, one containing solely 2-ethylhexyl side-chains and another with both types randomly distributed. Thermal characteristics, photophysics and morphology are compared and effects on film formation and charge transport in bulk-heterojunction blends demonstrated on photovoltaic devices utilizing F8T2s as donor and the fullerene derivative ICBA as acceptor material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call