Abstract

Reinforcement Learning has been widely used to solve problems with a little feedback from environment. Q learning can solve full observable Markov Decision Processes quite well. For Partially Observable Markov Decision Processes (POMDPs), a Recurrent Neural Network (RNN) can be used to approximate Q values. However, learning time for these problems is typically very long. In this paper, Mixed Reinforcement Learning is presented to find an optimal policy for POMDPs in a shorter learning time. This method uses both a Q value table and a RNN. Q value table stores Q values for full observable states and the RNN approximates Q values for hidden states. An observable degree is calculated for each state while the agent explores the environment. If the observable degree is less than a threshold, the state is considered as a hidden state. Results of experiment in lighting grid world problem show that the proposed method enables an agent to acquire a policy, as good as the policy acquired by using only a RNN, with better learning performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.