Abstract

Rare earth elements are crucial for the development of cutting-edge technologies in various sectors, such as energy, transportation, and health care. Traditional extraction of rare earth elements from soil and ore deposits primarily involves chemical leaching and solvent extraction. Environmental-based biological rare earth element extraction, such as bioleaching, can be a promising alternative to mitigate pollution and hazardous wastes. We investigated the sustainability aspects (techno-economic and environmental impact) of mixed rare earth metals production from soil in Idaho, USA. We focused on the bioleaching of surface soil using techno-economic analysis and “cradle-to-gate” life cycle assessment. The system boundary included collection, transportation, bioleaching, and molten salt electrolysis. Our results revealed that the mixed rare earth metals (including Nd, Ce, and La) production costs approximately $10,851 per metric ton and generates 1.9 × 106 kg CO2 eq./ton. Our results showed that most emissions are due to energy consumption during bioleaching. Over a 100-year time horizon ultrasound-assisted bioleaching can reduce greenhouse gas emissions by approximately 91 % compared to the traditional bioleaching process by decreasing the organic acid leaching process time and energy consumption. Our work demonstrates that higher solids loading in leaching with biological reactions can promote economic feasibility and reduce chemical wastes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.