Abstract
This paper deals with the construction of accurate analytic-numerical solutions of mixed problems related to the separated variable dependent wave equation u tt=(b(t)/a(x))u xx, 0<x<L, t>0 . Based on the study of the growth of eigenfunctions of the underlying Sturm–Liouville problems, an exact theoretical series solution is firstly obtained. Explicit bounds allow truncation of the series solution so that the error of the truncated approximation is less than ε 1 in a bounded domain Ω(d)={(x,t); 0⩽x⩽L, 0⩽t⩽d } . Since the approximation involves only a finite number of exact eigenvalues λ i 2, 1⩽i⩽n 0 , the admissible error for the approximated eigenvalues λ ̃ i 2, 1⩽i⩽n 0 , is determined in order to construct an analytical numerical solution of the mixed problem, involving only approximated eigenvalues λ ̃ i 2 , so that the total error is less than ε uniformly in Ω(d). Uniqueness of solutions is also treated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.