Abstract

In this paper, we consider a nonlinear impulsive parabolic type partial differential equation with nonlinear impulsive conditions. Dirichlet type boundary value conditions with respect to spatial variable is used, and eigenvalues and eigenfunctions of the spectral problem are founded. The Fourier method of the separation of variables is applied. A countable system of nonlinear functional equations is obtained with respect to the Fourier coefficients of the unknown function. A theorem on a unique solvability of the countable system of nonlinear functional equations is proved by the method of successive approximations. A criteria of uniqueness and existence of a solution for the nonlinear impulsive mixed problem is obtained. A solution of the mixed problem is derived in the form of the Fourier series. The absolute and uniform convergence of the Fourier series is proved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.