Abstract
Winter weather events with temperatures near $$0\,^\circ\mathrm{{C}}$$ are often associated with freezing rain. They can have major impacts on the society by causing power outages and disruptions to the transportation networks. Despite the catastrophic consequences of freezing rain, very few studies have investigated how their occurrences could evolve under climate change. This study aims to investigate the change of freezing rain and ice pellets over southern Quebec using regional climate modeling at high resolution. The fifth-generation Canadian Regional Climate Model with climate scenario RCP 8.5 at $$0.11^\circ$$ grid mesh was used. The precipitation types such as freezing rain, ice pellets or their combination are diagnosed using five methods (Cantin and Bachand, Bourgouin, Ramer, Czys and, Baldwin). The occurrences of the diagnosed precipitation types for the recent past (1980–2009) are found to be comparable to observations. The projections for the future scenario (2070–2099) suggested a general decrease in the occurrences of mixed precipitation over southern Quebec from October to April. This is mainly due to a decrease in long-duration events ( $$\ge 6\,\mathrm{{h}}$$ ). Overall, this study contributes to better understand how the distribution of freezing rain and ice pellets might change in the future using high-resolution regional climate model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.