Abstract
Smart surfaces can be described as surfaces that have the ability to respond in a controllable fashion to specific environmental stimuli. A heterogeneous (mixed) polymer brush (HPB) can provide a synthetic route to designing smart polymer surfaces. In this research we study HPB comprised of end-grafted polystyrene (PS) and poly(2-vinyl pyridine) (P2VP). The synthesis of the HPB involves the use of an "intermolecular glue" acting as a binding/anchoring interlayer between the polymer brush and the substrate, a silicon wafer. We compare anchoring layers of epoxysilane (GPS), which forms a self-assembled monolayer with epoxy functionality, to poly(glycidyl methacrylate) (PGMA), which forms a macromolecular monolayer with epoxy functionality. The PS and P2VP were deposited onto the wafers in a sequential fashion to chemically graft PS in a first step and subsequently graft P2VP. Rinsing the HPB in selective solvents and observing the change in water contact angle as a function of the HPB composition studied the switching nature of the HPB. Scanning probe microscopy was used to probe the topography and phase imagery of the HPB. The nature of the anchoring layer significantly affected the wettability and morphology of the mixed brushes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.