Abstract

Backfilling a self-assembled monolayer (SAM) of long poly (ethylene glycol) (PEG) with short PEG is a well-known strategy to improve its potential to resist fouling. Here it is shown, using x-ray photoelectron spectroscopy, contact angle, and atomic force microscopy, that backfilling PEG thiol with oligo (ethylene glycol) (OEG) terminated alkane thiol molecules results in underbrush formation. The authors also confirm the absence of phase separated arrangement, which is commonly observed with backfilling experiments involving SAMs of short chain alkane thiol with long chain alkane thiol. Furthermore, it was found that OEG addition caused less PEG desorption when compared to alkane thiol. The ability of surface to resist fouling was tested through serum adsorption and bacterial adhesion studies. The authors demonstrate that the mixed monolayer with PEG and OEG is better than PEG at resisting protein adsorption and bacterial adhesion, and conclude that backfilling PEG with OEG resulting in the underbrush formation enhances the ability of PEG to resist fouling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.