Abstract

Nitrogen plays a crucial role in limiting plant growth and determining net primary productivity in forest ecosystems. However, variations and influencing factors of soil nitrogen distribution on the aggregate scale in pure and mixed Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations remain unclear. This study aimed to explore how soil aggregate composition, geometric mean diameter (GMD), mean weight diameter (MWD), total nitrogen (TN), total acidolyzable nitrogen (TAN), available nitrogen (AN), nonacidolyzable nitrogen (AIN), amino acid nitrogen (AAN), nitrate nitrogen (NO3−-N), cidolyzable ammonia nitrogen (AMN), unknown-acidolyzable nitrogen (HUN), amino sugar nitrogen (ASN), and ammonium nitrogen (NH4+-N) contents and stocks varied with aggregate size (>2, 1–2, 0.25–1, and <0.25 mm) and stand type [Chinese fir mixed with Michelia macclurei Dandy (CF + MM), Chinese fir mixed with Mytilaria laosensis Lecomte (CF + ML) and pure stands of Chinese fir (CF)] in 0–20 and 20–40 cm soil depth. Soil N content in different stand types of Chinese fir plantations decreased as the aggregate size increased, whereas the soil N stock exhibited the opposite trend. In contrast to CF soil, CF + MM and CF + ML soil displayed a significant increase in MWD, GMD, and aggregate-associated TN, AN, NO3−-N, NH4+-N, AIN, AAN, ASN, and AMN contents and stocks, especially CF + MM soil. Organic N was more sensitive to the response of aggregate size and stand type than mineral N. Redundancy analysis and Pearson’s correlation analysis indicated that the 0.25–1 mm aggregate proportion was the main controlling factor for the variations in soil N content and storage. Overall, this study contributed significantly to the promotion of the sustainable use of soil resources and reference information for the scientific management and sustainable development of Chinese fir forests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call