Abstract

Zinc tin nitride (ZnSnN2, ZTN) films synthesized by magnetron co-sputtering at a temperature close to the ZTN decomposition point and with the cation ratio close to stoichiometric have been studied to gain insight into their structural, optical and electrical properties. According to X-ray diffraction and Raman spectroscopy, the samples are polycrystalline with some disorder in the cation sublattice. Hall effect measurements reveal n-type conductivity and very high carrier density above 1019 cm−3. At the lowest carrier density, the mobility achieves the best value ∼19 cm2/(V*s), which is acceptable for device applications. The optical band gap shows a blue shift with increasing electron density, which is related to the increase in tin content and the Burstein-Moss effect. Analysis of the blue shift in terms of the Burstein-Moss effect theory gives a value of 1.43 eV for the intrinsic band gap of ZTN in the mixed-phase state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call