Abstract

In the symbiosis between rhizobia and legumes, host plants can form symbiotic root nodules with multiple rhizobial strains, potentially showing different symbiotic performances in nitrogen fixation. Here, we investigated the presence of mixed nodules, containing rhizobia with different degrees of mutualisms, and evaluate their relative fitness in the Sinorhizobium meliloti–Medicago sativa model symbiosis. We used three S. meliloti strains, the mutualist strains Rm1021 and BL225C and the non-mutualist AK83. We performed competition experiments involving both in vitro and in vivo symbiotic assays with M. sativa host plants. We show the occurrence of a high number (from 27 to 100%) of mixed nodules with no negative effect on both nitrogen fixation and plant growth. The estimation of the relative fitness as non-mutualist/mutualist ratios in single nodules shows that in some nodules the non-mutualist strain efficiently colonized root nodules along with the mutualist ones. In conclusion, we can support the hypothesis that in S. meliloti–M. sativa symbiosis mixed nodules are formed and allow non-mutualist or less-mutualist bacterial partners to be less or not sanctioned by the host plant, hence allowing a potential form of cheating behavior to be present in the nitrogen fixing symbiosis.

Highlights

  • In the last decades, the interest on social interaction strategies of bacteria, including antagonism and cooperation has increased (Kiers et al, 2006)

  • The common model of symbiotic interaction wrongly dictates the monoclonality of symbiotic rhizobia in root nodules, i.e. one nodule is colonized by one rhizobium strain only (Denison, 2000)

  • In several cases the non-mutualist strain was present with low number of cells inside the mixed nodules, but nodules in which it was present at high titres were found

Read more

Summary

Introduction

The interest on social interaction strategies of bacteria, including antagonism and cooperation has increased (Kiers et al, 2006). Nitrogen fixing symbioses between rhizobia and leguminous plants provide interesting models to study social dynamics of strains, which compete for entering in symbiosis with the same host plant (Denison and Kiers, 2004). Rhizobia interact with plant roots after the perception of flavonoid molecules released by the plant roots. Lipo-chito-oligosaccharide molecules (Nod Factors) are produced by rhizobia and trigger a molecular pathway on plant cells. Cheating in Sinorhizobium meliloti–Medicago sativa Symbiosis into plant root tissues, intracellular colonization, formation of the root nodule structure, and differentiation of intracellular rhizobia in bacteroids. Bacteroids will express the nitrogenase genes responsible for the fixation of atmospheric di-nitrogen to ammonium, providing a selective advantage to plants growing in nitrogen-depleted soils

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.