Abstract

In this work, we prepared modified Fe2O3-WO3 particles and used it as a new FBC for biodiesel pre-combustion treatment. The optimum dosage of FBC, found from the its maximum stability and minimum corrosion property in biodiesel, is tested on the combustion characteristics, emissions, exergy, and economy of a semi-industrial boiler at two energies levels 240 and 280 MJ/h. The findings demonstrate that the use of the prepared tungsten-ferric FBC in biodiesel is economically feasible resulting in 4% and 1.7% reduction in boiler total costs at 240 and 280 MJ/h respectively. The FBC led in on average 5% and 3% increase in boiler thermal efficiency at 240 and 280 MJ/h respectively. The exergy efficiency also increases by 3% at 240 MJ/h. As the new proposed FBC ferric additive is also a strong reductive agent, it does improve the performance of the boiler in terms of emissions. The CO, HC, NO2 emissions level down by almost by 31%, 45% and 7% respectively at the 240 MJ/h. At higher energy level 280 MJ/h, the reductions vary to 44%, 27%, and 8% for CO, HC and NO2 emissions. The NO increases by 7% at 240 MJ/h and a slight reduction 0.05% was observed at 280 MJ/h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.