Abstract
Over the last three decades, mixed models have been frequently used in a wide range of small area applications. Such models offer great flexibilities in combining information from various sources, and thus are well suited for solving most small area estimation problems. The present article reviews major research developments in the classical inferential approach for linear and generalized linear mixed models that are relevant to different issues concerning small area estimation and related problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.