Abstract

A finite element discretized symplectic method is introduced to find the thermal stress intensity factors (TSIFs) under steady-state thermal loading by symplectic expansion. The cracked body is modeled by the conventional finite elements and divided into two regions: near and far fields. In the near field, Hamiltonian systems are established for the heat conduction and thermoelasticity problems respectively. Closed form temperature and displacement functions are expressed by symplectic eigen-solutions in polar coordinates. Combined with the analytic symplectic series and the classical finite elements for arbitrary boundary conditions, the main unknowns are no longer the nodal temperature and displacements but are the coefficients of the symplectic series after matrix transformation. The TSIFs, temperatures, displacements and stresses at the singular region are obtained simultaneously without any post-processing. A number of numerical examples as well as convergence studies are given and are found to be in good agreement with the existing solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.