Abstract
This work reports the effect of multiwalled carbon nanotubes on mixed-mode I/II interlaminar fracture toughness ([Formula: see text]) of unidirectional carbon fiber/epoxy composite laminates made by prepregs. The carbon fiber/epoxy laminates were fabricated in an autoclave with a previous deposition of different multiwalled carbon nanotube contents at their middle plane interface by spraying technique. Mixed-mode bending tests were conducted on carbon fiber/epoxy laminate specimens under different mixed-mode ratios. The results of mixed-mode bending tests showed that the addition of multiwalled carbon nanotubes can effectively improve the [Formula: see text] of carbon fiber/epoxy laminates. With a 0.2 wt.% multiwalled carbon nanotubes content in carbon fiber/epoxy laminates, the [Formula: see text] under mixed-mode ratios of 0.2, 0.5 and 0.8 increased by 25%, 12% and 19%, respectively. These results were explained in terms of the damage mechanisms observed at the fracture surfaces of tested specimens by scanning electron microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.