Abstract

Lightweight aggregate concrete (LWAC) has gained popularity as an alternative to ordinary concrete for structural purposes, due to its higher strength-to-weight ratio. The present work aims to present novel numerical results of complete failure simulations performed on pre-cracked beams made of LWAC, subjected to a mixed-mode fracture test. To this end, an innovative simulation algorithm for crack propagation within a multiscale framework has been adopted, specifically conceived for predicting micro-cracking in quasi-brittle heterogeneous materials under general loading conditions; such a strategy allows to take into account both the continuous crack propagation along a non-prescribed path and the crack penetration through a material interface. Path tracking for continuous crack propagation has been performed by using an advanced geometry optimization method coupling a moving mesh approach and a gradient-free optimization solver, whereas crack penetration has been simulated by means of a simplified re-initiation criterion at the interface, involving a material characteristic length. Several numerical experiments have been carried out, in order to investigate the influence of the Young’s modulus of lightweight aggregates on the peak and post-peak behavior. These results have been validated by comparing them with those obtained from fully homogenized analyses based on the LEFM approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.