Abstract

The behavior of adhesively-bonded pultruded GFRP joints under cyclic loading was experimentally investigated. Three specimen types were examined: double cantilever beam, end load split, and mixed-mode bending specimens for Mode I, Mode II, and mixed-Mode I/II loading conditions respectively. The crack length was determined during the fatigue experiments by a dynamic compliance method for DCB specimens and a video extensometer for ELS and MMB specimens. Fatigue experiments were conducted at constant displacement amplitude. A significant difference was found between the quasi-static strain energy release rates and corresponding fatigue threshold values for all the examined cases. A total fatigue life model was used to simulate the fatigue crack growth curve under each mode-mixity. The experimental results and the analytical models were used to establish fatigue mixed-mode fracture failure criteria that can be used for the prediction of the fatigue behavior of other joint configurations comprising the same adhesive and adherends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.