Abstract

In bridge industry, the composite box-girder with corrugated steel webs and concrete flanges is quite a common practice over recent years. However, this innovation encounters fatigue-sensitive details not fully investigated, especially in the research area of mixed-mode fatigue crack growth. This study addresses the mixed-mode fatigue crack growth analysis of an I-shaped corrugated web girder associated with the represented web-to-flange detail. A linear elastic fracture mechanics (LEFM) based numerical framework was established to simulate the mixed-mode crack propagation. For comparison, a semi-analytical weight function framework was also introduced to predict the pure Mode-I crack propagation life of the same detail. Experimental results of a full-scale inclined corrugated web girder were employed to evaluate these two proposed frameworks. A parametric study was presented based on the proposed frameworks to investigate the effect of initial crack depth and crack shape on fatigue crack propagation life. By comparing the simulation results with test results, the applicability of the proposed LEFM-based numerical framework to the simulation of mixed-mode fatigue crack propagation behaviour in corrugated web girders was discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call