Abstract

• New analytical dislocation solution in a transversely isotropic cylinder is developed. • Material anisotropy has an efficient effect on stress intensity factors. • Interaction of cracks implies that need for mixed-mode analysis is essential. • Loading type and crack length have also a crucial effect on stress intensity factors. The present study examined mixed mode cracking in a transversely isotropic infinite cylinder. The solutions to axisymmetric Volterra climb and glide dislocations in an infinite circular cylinder of the transversely isotropic material are first obtained. The solutions are represented in terms of the biharmonic stress function. Next, the problem of a transversely isotropic infinite cylinder with a set of concentric axisymmetric penny-shaped, annular, and circumferential cracks is formulated using the distributed dislocation technique. Two types of loadings are considered: (i) the lateral cylinder is loaded by two self-equilibrating distributed shear stresses; (ii) the curved surface of the cylinder is under the action of a distributed normal stress. The resulting integral equations are solved by using a numerical scheme to compute the dislocation density on the borders of the cracks. The dislocation densities are employed to determine stress intensity factors for axisymmetric interacting cracks. Finally, a good amount of examples are solved to depict the effect of crack type and location on the stress intensity factors at crack tips and interaction between cracks. Numerical solutions for practical materials are presented and the effect of transverse isotropy on stress intensity factors is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.