Abstract

BackgroundRobotic hand orthoses (RHO) aim to provide grasp assistance for people with sensorimotor hand impairment during daily tasks. Many of such devices have been shown to bring a functional benefit to the user. However, assessing functional benefit is not sufficient to evaluate the usability of such technologies for daily life application. A comprehensive and structured evaluation of device usability not only focusing on effectiveness but also efficiency and satisfaction is required, yet often falls short in existing literature. Mixed methods evaluations, i.e., assessing a combination of quantitative and qualitative measures, allow to obtain a more holistic picture of all relevant aspects of device usability. Considering these aspects already in early development stages allows to identify design issues and generate generalizable benchmarks for future developments.MethodsWe evaluated the short-term usability of the RELab tenoexo, a RHO for hand function assistance, in 15 users with tetraplegia after a spinal cord injury through a comprehensive mixed methods approach. We collected quantitative data using the Action Research Arm Test (ARAT), the System Usability Scale (SUS), and timed tasks such as the donning process. In addition, qualitative data were collected through semi-structured interviews and user observations, and analyzed with a thematic analysis to enhance the usability evaluation. All insights were attributed and discussed in relation to specifically defined usability attributes such as comfort, ease of use, functional benefit, and safety.ResultsThe RELab tenoexo provided an immediate functional benefit to the users, resulting in a mean improvement of the ARAT score by 5.8 points and peaking at 15 points improvement for one user (clinically important difference: 5.7 points). The mean SUS rating of 60.6 represents an adequate usability, however, indicating that especially the RHO donning (average task time = 295 s) was perceived as too long and cumbersome. The participants were generally very satisfied with the ergonomics (size, dimensions, fit) of the RHO. Enhancing the ease of use, specifically in donning, increasing the provided grasping force, as well as the availability of tailoring options and customization were identified as main improvement areas to promote RHO usability.ConclusionThe short-term usability of the RELab tenoexo was thoroughly evaluated with a mixed methods approach, which generated valuable data to improve the RHO in future iterations. In addition, learnings that might be transferable to the evaluation and design of other RHO were generated, which have the potential to increase the daily life applicability and acceptance of similar technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.