Abstract

Globally scalable sunlight-driven devices that convert solar energy into storable fuels will require efficient light absorbers that are made of non-precious elements. Suitable photoanode materials are yet to be discovered. Here we utilised the timesaving nature of pulsed-laser-in-liquids synthesis and prepared a series of neat and mixed-metal tungsten oxide photoanode materials to investigate the effect of ad-metals on optical and photocurrent generation properties. We obtained sub-μm-sized materials with different colours from W, Al, Ta, or first-row transition metal targets in water or aqueous ammonium metatungstate solutions. We observed metastable polymorphs of WO3 and tungsten oxides with varying degrees of oxygen deficiency. Pulsed-laser in liquids synthesis of Ni in ammonium metatungstate solutions produce hollow spheres (with ≤6 % Ni with respect to W). Photocurrent generation in strong aqueous acid is highest in mixed-metal tungsten oxide photoanode materials with around 5 % of iron or nickel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.