Abstract

AbstractThe vast chemical and structural tunability of metal–organic frameworks (MOFs) are beginning to be harnessed as functional supports for catalytic nanoparticles spanning a range of applications. However, a lack of straightforward methods for producing nanoparticle‐encapsulated MOFs as efficient heterogeneous catalysts limits their usage. Herein, a mixed‐metal MOF, NiMg‐MOF‐74, is utilized as a template to disperse small Ni nanoclusters throughout the parent MOF. By exploiting the difference in NiO and MgO coordination bond strength, Ni2+ is selectively reduced to form highly dispersed Ni nanoclusters constrained by the parent MOF pore diameter, while Mg2+ remains coordinated in the framework. By varying the ratio of Ni to Mg in the parent MOF, accessible surface area and crystallinity can be tuned upon thermal treatment, influencing CO2 adsorption capacity and hydrogenation selectivity. The resulting Ni nanoclusters prove to be an active catalyst for CO2 methanation and are examined using extended X‐ray absorption fine structure and X‐ray photoelectron spectroscopy. By preserving a segment of the Mg2+‐containing MOF framework, the composite system retains a portion of its CO2 adsorption capacity while continuing to deliver catalytic activity. The approach is thus critical for designing materials that can bridge the gap between carbon capture and CO2 utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call