Abstract
Multi-site phosphorylation is ubiquitous in cell biology and has been widely studied experimentally and theoretically. The underlying chemical modification mechanisms are typically assumed to be distributive or processive. In this paper, we study the behaviour of mixed mechanisms that can arise either because phosphorylation and dephosphorylation involve different mechanisms or because phosphorylation and/or dephosphorylation can occur through a combination of mechanisms. We examine a hierarchy of models to assess chemical information processing through different mixed mechanisms, using simulations, bifurcation analysis and analytical work. We demonstrate how mixed mechanisms can show important and unintuitive differences from pure distributive and processive mechanisms, in some cases resulting in monostable behaviour with simple dose-response behaviour, while in other cases generating new behaviour-like oscillations. Our results also suggest patterns of information processing that are relevant as the number of modification sites increases. Overall, our work creates a framework to examine information processing arising from complexities of multi-site modification mechanisms and their impact on signal transduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.