Abstract
Translative integral formulas for curvature measures of convex bodies were obtained by Schneider and Weil by introducing mixed measures of convex bodies. These results can be extended to arbitrary closed convex sets since mixed measures are locally defined. Furthermore, iterated versions of these formulas due to Weil were used by Fallert to introduce quermass densities for (non-stationary and non-isotropic) Poisson processes of convex bodies and respective Boolean models. In the present paper, we first compute the special form of mixed measures of convex cylinders and prove a translative integral formula for them. After adapting some results for mixed measures of convex bodies to this setting we then use this integral formula to obtain quermass densities for (non-stationary and non-isotropic) Poisson processes of convex cylinders. Furthermore, quermass densities of Boolean models of convex cylinders are expressed in terms of mixed densities of the underlying Poisson process generalizing classical formulas by Davy and recent results by Spiess and Spodarev.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.