Abstract

Mixed matrix membranes (MMMs) have received significant attention recently in the applications of gas separation for clean energy and environmental sustainability. The compatibility between dispersed functional fillers and continuous polymer matrices of MMMs is the key issue to avoid the formation of nonselective defects for better gas separation performance. Because of their easily tunable porosity, functionality, and morphology, metal–organic frameworks (MOFs) have been regarded as ideal fillers for MMMs. In this work, we present a facile modulated hydrothermal synthesis of a hafnium UiO-66-type MOF UiO-66(Hf)-(OH)2 with well-defined nanoparticle size that exhibits a good compatibility with polybenzimidazole (PBI) as the polymeric matrix in the resultant MMMs. Compared to pure PBI membranes, MMMs containing MOF nanoparticles have both increased H2 permeability and H2/CO2 permselectivity under optimized conditions. One of the MMMs, 10%UiO-66(Hf)-(OH)2@PBI, demonstrates excellent H2 permeability (8.12 bar...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call