Abstract

The condensation reaction of 2,6-diformylpyridine with an equimolar mixture of opposite enantiomers of trans-1,2-diaminocyclopentane and trans-1,2-diaminocyclohexane using a dynamic combinatorial chemistry approach has been examined. In nonmetal-templated reactions, depending on reaction conditions, mixed 2 + 1 + 1 macrocyclic imine or bigger mixed 4 + 2 + 2 imine macrocycle are formed selectively. The 2 + 1 + 1 imine used as a precursor in the templated by CdII ions produces a library of enlarged chiral mixed imines coordinated with metal cations among which the hexanuclear CdII complex of 6 + 3 + 3 imine was isolated and characterized. All macrocyclic imine compounds have been reduced to the corresponding macrocyclic amines, which have been further transformed into their hydrochlorides. Each macrocyclic compound has been obtained as two enantiomers. For imine macrocycles and for the hydrochloride derivatives of macrocyclic amines, their X-ray crystal structures have been determined. In particular, the crystals of protonated 4 + 2 + 2 macrocyclic amine, which contains two types of diastereomeric cations differing in terms of inverted twists of pyridine moieties, and hexanuclear CdII complex of 6 + 3 + 3 imine, which gives a deeper insight into the expansion reaction, have been investigated. A heterochiral self-sorting of 2 + 2 and 2 + 1 + 1 macrocyclic imines has been confirmed by a competition reaction of 2,6-diformylpyridine, racemic trans-1,2-diaminocyclopentane, and racemic trans-1,2-diaminocyclohexane and theoretical calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call