Abstract
Under investigation is a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation which can be used to describe nonlinear wave propagation in dissipative media. Via the bilinear transformation method, the mixed lump and soliton solutions are obtained for the equation. The asymptotic behavior of the mixed solutions are analyzed. Furthermore, the fusion and fission behaviors of the lump and soliton are observed for the first time. The lump and soliton can merge into a whole soliton over time, or, on the contrary, the soliton may differentiate into a lump and a new soliton. During the processes, the amplitude of the lump will greatly vary, while the amplitude of the soliton will change slightly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.